【参考文献】 [1] Li Gu〇-Jie, Cheng Xue -Qi. Research status and scientific thinking of big data. Bulletin of Chinese Academy of Sciences,2012,27(6) : 647-657(inChinese) [2] Big data. Nature,2008,455(7209): 1-136 [3] Dealing with data. Science,2011,331(6018) : 639-806 [4]Holland J. Emergence: From Chaos to Order. Redwood City,California: Addison-Wesley,1997 [5] Anthony J G Hey. The Fourth Paradigm: Data-intensive Scientific Discovery. Microsott Research,2009 [6] Phan X H,Nguyen L M, Horiguchi S. Learning to classify short and sparse text & Web with hidden topics from large- scale data collections//Proceedings of the 17th International Conference on World Wide Web. Beijing, China, 2008 : 91-100 [7] SahamiM,Heilman T D. A web-based kernel function for measuring the similarity of short text snippets//Proceedings of the 15th International Conference on World Wide Web. Edinburgh,Scotland,2006: 377-386 [8] Efron M, Organisciak P, Fenlon K. Improving retrieval of short texts through document expansion//Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. Portland,OR,USA, 2012: 911-920 [9]HongL,Ahmed A,Gurumurthy S,SmolaAJ,Tsioutsiou- liklis K. Discovering geographical topics in the twitter stream//Proceedings of the 21st International Conference on World Wide Web (WWW 2012). Lyon,France,2012:769-778 [10] Pozdnoukhov A,Kaiser C. Space-time dynamics of topics in streaming text//Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Location-Based Social Networks. Chicago, IL,USA,2011: 1-8 [11] Sun Yizhou,Norick Brandon, Han Jiawei,Yan Xifeng,Yu Philip S,Yu Xiao. Integrating meta-path selection with ^^er- guided object clustering in heterogeneous information net- works//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Beijing,China,2012: 1348-1356 [12]Hastie T,Tibshirani R,Friedman J. The Elements of Statistical Learning. New York: Springer,2009 [13] Meinshausen N,YuB. Lasso-type recovery of sparse repre?sentations for high-dimensional data. The Annals of Statistics,2009, 37(1): 246-270 [14] Zhou Ao-Ying,Jin Che-Qing,Wang Guo-Ren,Ll Jian- Zhong. A survey on the management of uncertain data. Chinese Journal of Computers? 2009, 32(1) : 1-16(in Chinese) [15] Abiteboul S,Kanellakis P C,Grahne G. On the representa?tion and querying of sets of possible worlds. Theoretical Computer Science,1991,78(1): 158-187 [16] Koller D, FriedmanN. Probabilistic Graphical Models: Prin?ciples and Techniques - Adaptive Computation and Machine Learning. Cambridge,MA: The MIT Press,2009 [17]Aggarwal C C. Managing and Mining Uncertain Data. Berlin: Springer Publishing Company,Incorporated,2009计 算 [18] Wang Quan,Xujun,Lillang,Craswell Nick. Regularized latent semantic indexing//Proceedings of the 34th Interna?tional ACM SIGIR Conference on Research and Development m Information Retrieval (SIGIR? 11). Beijing,China,2011: 685-694 [19] Mackey L, Talwalkar A,Jordan M I. Divide-and-conquer matrix factorization//Proceedings of the 25 th Annual Con!er- ence on Neural In.formation Processing Systems (NIPS). Granada, Spain, 2011 : 1134-1142 [20] Gershman S, Blei D. A tutorial on Bayesian nonparametric models. Journal of Mathematical Psychology,2012,56(1): 1-12 [21] Kulis B,Jordan M I. Revisiting 是-means: New algorithms via Bayesian nonparametrics//Proceedings of the 29th Inter?national Conference on Machine Learning(ICML). Edinburgh,UK,2012 [22] Yaneer Bar-Yam. A mathematical theory of strong emer?gence using multiscale variety. Complexity, 2004, 9(6):15-24 [23] Bedau Mark A. Weak emergence. Nous, 1997, 31(sl1): 375-399 [24] Chalmers David J. Strong and Weak Emergence. Oxford: Oxford University Press,2002 [25] Ilenrya Adam Douglas,Pralat Paweg Zhangvol Cun-Quan. Emergence of segregation in evolving social networks. Proceedings of the National Academy of Sciences, 2011, 108(21): 8605-8610 [26] Bergman M K. White paper:The Deep Web:Surfacing hidden value. Journal of Electronic Publishing,2001,7(1). DOI: <http://dx.doi.org/10>. 3998/3336451 0007. 104 [27] Florescu D,Levy A,Mendelzon A. Database techniques for the World-Wide-Web: A survey. SIGMOD Record,1998, 27(3): 59-74 [28] Fan Wenfei. Data quality: Theory and practice//Proceedings of the 2012 International Conference on Web-Age Information Management(WAIM? 12). Harbin,China,2012: 1-16 [29] Fan Wenfei, Geerts Floris. Foundations of data quality management.Synthesis Lectures on Data Management, 2012, 4(5): 1-217 [30]Fan Wenfei. Dependencies revisited for improving data quality//Proceedingsof the27th ACM SIGMOD-SIGACT- SIGART Symposium on Principles of Database Systems (PODS,08). Vancuver,Canada,2008: 159-170 |